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Chapter 2 

Literature Review 

2.1 Introduction  

This chapter presents the review of the literature that theoretically underpins the 

thesis. It includes general theories of learning and understanding, but focuses 

particularly on embodiment on the one hand and symbolism on the other. The 

relationship between embodiment and symbolism will play a fundamental role in the 

approach to the teaching of mathematics in general and vectors in particular. It will be 

used to build a theoretical framework in which meaning for symbolism is constructed 

from reflection on embodied activities, and to lay out a schema of development to 

enable the cognitive development to be described and tested in the main study. 

2.2 Theories of knowledge and understanding 

In working with students, I found that their responses did not seem to fit within a 

single theoretical position and therefore found it necessary to review a number of 

different theories to build a theoretical framework to categorise answers that arose in 

my research. The framework developed is a blend and extension of other theories. In 

what follows I describe the literature and the theories I have considered, and my 

reasons for building the theoretical framework used in this thesis. 

2.2.1 Intuition 

From my experience, different physical encounters of vectors gained in Physics or 

every-day life can cause complications for students. They answer questions from a 

‘false physical intuition’ point of view. For example, when I asked students in the 

preliminary study to add two vectors a and b as shown in fig 2.1, nearly 50% gave a 

wrong answer c, marked with a dotted line. 
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Fig. 2.1 Example of the ‘intuitive’ addition of two vectors 

Although this might seem like a misapplication of the triangle law, from interviews, it 

appears that several students used a physical experience of two people pulling them in 

directions of vectors a and b. There is a stronger pull in the b direction and therefore 

that’s where they are going to end up moving. Students in this case seem to forget 

about the mathematical rules of adding vectors and base their answer on ‘physical 

intuition’ which, regrettably, leads them astray. As I have decided to classify such 

answers as physically intuitive responses I have become interested at the ways that 

‘intuition’ has been formulated in the past. 

The early philosophers were interested in intuition as a basic human faculty. In 

his ‘Essay Concerning Human Understanding’ (1690), the English Philosopher, John 

Locke specifies three degrees of knowledge, which are “intuitive”, “demonstrative” 

and “sensory”. In discussing Locke’s ideas, Sierpinska (1990) refers to intuitive 

knowledge as “irresistible and certain”. Intuitive knowledge seeks “identity or 

diversity” because “it is the first act of the mind to perceive its ideas and to perceive 

their difference and that one is not the other” (Sierpinska, 1990, pp. 28–29). 

In his Critique of Pure Reason (1781), the philosopher Kant summarizes 

cognition in the following terms: 

[…] all human cognition begins with intuitions, proceeds from thence 
to conceptions, and ends with ideas. (Kant, 1751, p.404) 

Skemp (1971) specifies two modes of functioning of intelligence: intuitive and 

reflective. He specifies the intuitive mode as being ‘aware through our receptors 

(particularly vision and hearing) of data from the external environment, this data 

being automatically classified and related to other data by the conceptual structures,’ 

(Skemp, 1971, p.51). 
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Royce et al. (1978), in a review of psychological epistemology, includes 

intuition as a “distinct cognitive phenomenon, together with perception, thinking and 

symbolisation.” 

Fischbein, Tirosh and Melamed (1981) write: 

Accepting intuitively a certain solution or a certain interpretation 
means to accept it directly without (or prior to) resorting explicitly to a 
detailed justification. [...] The problem of identifying the natural 
intuitive biases of the learner is important because they affect – 
sometimes in a very strong and stable manner – his concepts, his 
interpretations, his capacity to understand, to solve and memorize in 
certain area. We are naturally inclined to retain interpretations which 
suit these natural, intuitive biases, and to forget or to distort those 
which do not fit them.  
 (Fischbein et al., 1981, p 491) 

They end their article by concluding that: 

Didactical strategies must be devised for shaping improved intuitive 
interpretations and for overcoming conflicting intuitive biases 
 (Fischbein et al., 1981, p. 512) 

Fischbein (1994) specifies intuition as one of the three components of mathematics as 

a human activity. The other two components are formal and algorithmic. 

Theoretically, intuitions may play a facilitating role in the instructional process, but 

very often, contradictions may appear:  

Intuitions may become obstacles – epistemological obstacles [...] – in 
the learning, solving, or invention processes. 
 (Fischbein, 1994, p. 232–234) 

Sierpinska (1990) summarises a model of understanding mathematical concepts 

developed by Herscovics and Bergeron (1989) in which they also look at intuition. 

She quotes them: 

Intuition [...] arises from a type of thinking based essentially on visual 
perception and results in an ability to make rough non-numerical 
approximations. (Sierpinska, 1990, p. 28) 

According to Dewey (1988), and then Piaget, the first stage of concepts are formed 

from experience of a single object and by building a general category of objects with 
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similar or the same characteristics. The second stage comes from discriminating 

between properties of characteristic and non-characteristic objects. The third stage 

consists of “application to explaining new cases with the help of a discovery made in 

one case,” (op. cit., p. 164-165). In my own research, being aware of the possible 

‘false intuitions’ in the second stage, the question arises whether the third stage—if 

implemented carefully and reflectively—can help to straighten the misconception 

gained in the second stage. 

2.2.2 Instrumental-relational understanding 

As I was intending to reintroduce the concept of vector addition to the experimental 

group of students in a specific context, I decided to look at the theory of the 

instrumental and relational understanding of Skemp (1976), which was expanded by 

other researchers, and also at the related theory of procedural-conceptual knowledge 

introduced by Hiebert & Lefevre (1986). 

Skemp (1971, p. 15) describes two types of learning. One he calls habit 

learning, or rote-memorizing, which is instrumental. The other learning involves 

understanding, which he calls intelligent learning. Piaget pioneered studying the 

second type of learning (cognitive processes in children and adults). Skemp indicates 

that reflective activity “involves becoming aware of one’s own concepts and schemas, 

perceiving their relationships and structures, then manipulating these in various 

ways,” (Skemp, 1971, p 77). He also suggests that “low-order concepts can be 

formed, and used, without the use of language,” (p. 26) however “making an idea 

conscious seems to be closely connected with associating it with a symbol,” (p. 78) 

and “it is largely by the use of symbols that we achieve voluntary control over our 

thoughts,” (p.78). According to Skemp, symbols help us to “reduce the cognitive 

strain of keeping the whole of the relevant information accessible,” which is very 

important since “one of the aims of reflection is to become aware of how one’s ideas 

are related, and to integrate them further. 
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My analysis of observing students for many years, as a mathematics teacher, is 

that the lack of the requirement for analysis and symbolic accuracy in graphical 

representations causes many problems when students have to apply their knowledge 

to questions involving applications of vector quantities in two and three dimensions. 

The lack of accuracy seems to often stop, observed by me students, relating ideas and 

integrating them further. Krutetskii (1976) suggested that gifted children have “a 

tendency to interpret environmental phenomena on the level of logical and 

mathematical categories, to perceive many phenomena through the prism of logical 

and mathematical relationships, and distinguish a mathematical aspect when 

perceiving many phenomena in an activity” (1976, p. 302). 

Van Hiele (2002) writes, ‘The theoretical level to which the axioms belong can 

only be reached by starting from the descriptive level’ (object recognition level) 

otherwise they have to learn ‘parts of geometry by heart and that means only 

instrumental understanding’. He also states that ‘Many teachers were very content 

with such a course of events [...] and there were always pupils who liked mathematics 

from the very beginning and found their own way to the higher levels. But a great part 

of the pupils developed a dislike of geometry and after their study was finished forgot 

practically all of it.’ (van Hiele, 2002, p 34-35). He also warns that, ‘Reflection fails 

because the pupil only disposes of concepts of the visual level and those concepts do 

not lead to a result on the descriptive level,’ (van Hiele, 2002, p. 35). The visual level 

means that shapes are recognised by seeing and not by their properties. He gives as 

the instrumental example drawing a picture using coordinates or vectors on the 

squared paper.  

2.2.3 Procedural-conceptual knowledge 

According to Hiebert and Lefevre (1986), procedural knowledge “is made of two 

distinct parts. One part is composed of the formal language, or symbolic 

representation system, of mathematics. The other part consists of the algorithms, or 

rules, for completing mathematical task.” (p 6). The second one of these seems like 
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Skemp’s instrumental understanding, which indicate step-by-step instructions that 

prescribe how to complete tasks. Hiebert and Lefevre say, “in general, knowledge of 

the symbols and syntax of mathematics implies only an awareness of surface features, 

not a knowledge of meaning,” (p. 6). What the authors underline is that conceptual 

and procedural knowledge have to be linked, otherwise “students may have a good 

intuitive feel for mathematics but not solve the problems, or they may generate 

answers but not understand what they are doing,” (p. 9). Expanding on their ideas of 

symbols, they say, that symbols represent ideas that can be met in real-world 

experiences. These ideas can be represented as conceptual knowledge, which provides 

the referents for symbols. 

This would fit with the way I reintroduced the experimental group to the idea of 

the vector (described in methodology chapter, later on). 

If the procedures are related to the underlying rationale on which they 
are based, the procedures begin to look reasonable. It is possible to 
understand how and why the procedures work. [...] procedures that are 
meaningful, that are understood by their users, are more likely to be 
recalled.  (Hiebert and Lefevre, 1986, p. 10-11) 

Therefore, if my technique of reintroducing the experimental group to vectors is 

correct, the retention should be better and students should be able to perform better 

than the control group after a break (six months in case of my research).  

Basically conceptual knowledge and relational understanding indicate that 

somebody learnt something with meaning, while procedural knowledge and 

instrumental understanding indicate that somebody learnt how to solve a problem but 

not necessarily with meaning. 

While the first ideas of Skemp’s instrumental and relational understanding 

placed these two types of understanding into separate classifications, Hiebert and 

Lefevre (1986) say that 

Not all knowledge can be usefully described as either conceptual or 
procedural. Some knowledge seems to be a little of both, and some 
knowledge seems to be neither. (Hiebert and Lefevre, 1986, p. 3) 

They write that 
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[...] conceptual knowledge is characterized most clearly as knowledge 
that is rich in relationships (Hiebert and Lefevre, 1986, p. 3) 

They also say that 

In fact, a unit of conceptual knowledge cannot be an isolated piece of 
information; by definition it is a part of conceptual knowledge only if 
the holder recognizes its relationship to other pieces of information.  
  (Hiebert and Lefevre, 1986, p. 4) 

They quote Skemp (1971) when describing “understanding” as “the state of 

knowledge when new mathematical information is connected to existing knowledge.” 

(p. 4). The other way they see development of conceptual knowledge is by “the 

construction of relationships between pieces of information that already have been 

stored in memory”. They quote Bruner (1961), Ginsburg (1977) and Lawler (1981) as 

the predecessors of such a theory. They use the term ‘abstract’ as the degree to which 

a unit of knowledge is tied to a specific context. According to them: “Abstractness 

increases as knowledge becomes freed from specific contexts,” (p. 5). 

This is very relevant to my investigation of students’ responses. I have found 

from the preliminary investigation that students who performed best in the 

questionnaire, used in the main study, were those who either connected to a very 

specific context of a journey or those who saw the vector as a mathematical object. 

And therefore it seems that they used abstractness to different degrees. 

Hiebert and Lefevre write (1986, p. 5) that “some relationships are constructed 

at a higher, more abstract level than the pieces of information they connect”, which 

they call a reflective level. They note that it is not always easy to assess where 

procedural knowledge ends and conceptual starts. I have tried to assess this difference 

not only through the responses to my questionnaires but also through the interviews. 

The assessment of the students’ responses is graded in stages of their conceptual 

development. These stages were developed with the help of the text-book that 

students study in Year 11. The book introduces vectors in stages from the embodied 

action of transformation of an object to the idea of the column vector, and arrows 

having a specific direction and magnitude, through to the idea of vector addition and 
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equivalent vectors to the idea of the free vector. The interviews looked at the 

development of students’ language to express their actions when adding vectors, 

trying to assess if they express their conceptual or procedural knowledge.  

To obtain a deeper insight into the nature of human understanding, it has proved 

useful to look more closely at the link between intuitions produced by embodiment 

and the symbolism that is used to represent the processes and concepts. 

2.3 Different modes of operation in mathematics 

At school students are introduced to vectors in two ways. In Physics, vectors are 

introduced as journeys or forces, added according to the triangle law or parallelogram 

law, with different meanings and then represented as two one-dimensional 

components which are added by adding components. The sixteen-year-old students 

studying Mechanics in my school, who are taught in this way seemed to cope well 

with resolving horizontally and vertically and solving problems formulated in this 

context. However, according to my preliminary study (to be discussed in detail in 

chapter 4), many of these students have subtle problems with geometric 

interpretations, particularly with free vectors. The evidence arose in the way they 

answered certain ‘singular’ (unusual) questions (shown in figure 1.4b) which do not 

conform to the general prototypes that are suggested by their earlier experiences. In 

chapter 1, I theorised that if students are given embodied experiences focusing on the 

effect of transformations rather than the specific actions involved, then they have the 

potential to construct an embodied conceptualisation of the notion of free vector, and 

then cope more easily, not only with generic cases, but also with singular cases. 

This requires a consideration of the literature that relates how physical 

experience with the outside world (embodiment) plays its part in the learning process. 

A major source for these ideas is the work of Lakoff and his colleagues who consider 

how human embodiment underpins abstract thinking. 

I will also be looking at the importance of symbolic representations in the 

ability to model problems abstracted from the outside world in mathematical terms, 
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and how reflection on mental and physical actions affects the building of coherent 

conceptual schemas. This involves considering not only how operations are carried 

out by sequences of step-by-step actions, but also how the effect of these actions can 

be symbolized and considered as mental entities to think about. A major source for 

these ideas is the theory of encapsulation of processes as mental objects as formulated 

by Dubinsky (1991) and Sfard (1991), and in the theory of procepts (where a symbol 

dually evokes either process or concept) formulated by Gray and Tall (1994). 

2.3.1 Successive stages of cognitive development 

Piaget (1985) describes cognitive development of the child in several stages: sensori-

motor, pre-conceptual, concrete-operational and formal-operational. To underpin this 

development, he formulated a three-part theory of abstraction. In the first two stages 

(sensori-motor and pre-conceptual) a child goes through the process of empirical 

abstraction, when (s)he focuses on physical objects and their properties, noting 

similarities and differences that are abstracted empirically. In the third, concrete-

operational stage, the child focuses on actions on objects and the properties of these 

actions result in what he calls pseudo-empirical abstraction. The formal-operational 

stage is described in his theory in terms of reflective abstraction in which ‘actions and 

operations become thematized objects of thought or assimilation’ (Piaget, 1985, page 

49). He suggests that these stages of development apply to children from birth to 

about age of 12. 

Piaget’s ideas of conceptual growth were adapted by many researchers who 

developed them to apply to any age to formulate how conceptual growth takes place. 

Bruner (1966), for example, introduced three modes of representation: enactive, 

iconic and symbolic. He wrote: 

What does it mean to translate experience into a model of the world? 
Let me suggest there are probably three ways in which human beings 
accomplish this feat. The first is through action. [...] There is a second 
system of representation that depends upon visual or sensory 
organisation and upon the use of summarizing images. [...] we have 
come to talk about the first form of representation as enactive, the 
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second is iconic. [...] Finally, there is a representation in words or 
language. Its hallmark is that it is symbolic in nature.  
 (Bruner, 1966, p. 10–11) 

Bruner’s enactive mode of operation is based on action and begins in Piaget’s sensori-

motor stage, to be followed by the ikonic and symbolic modes in the pre-conceptual 

and concrete-operational stages. In older individuals, all three modes may be available 

and used as appropriate in different contexts. 

Lakoff and Johnson (1980) formulate their idea of conceptual embodiment as 

follows: 

Our experiences with physical objects (especially our own bodies) 
provide the basis for an extraordinarily wide variety of ontological 
metaphors, that is, ways of viewing events, activities, emotions, ideas, 
etc., as entities and substances. (Lakoff and Johnson, 1980, p. 25) 

Lakoff & Núñez (2000) propose that all human ideas are grounded in sensori-motor 

experience. This involves the use of formulatable cognitive mechanisms by which the 

abstract is comprehended in terms of the concrete by using a conceptual metaphor. 

They claim that most mathematical thought makes use of conceptual metaphors. 

(2000, page 5). According to Lakoff & Núñez, human reason crucially depends both 

on human experience and imagination and therefore categorisation depends partly on 

human perception and motor activity, and partly on mental imagery. 

2.3.2 Construction of meaning 

Constructivists see students as active learners, who make sense of the world on the 

basis of the links between past experience and new information. In doing so, students 

may need to reconstruct their earlier conceptions to make sense of new information 

(Driver and Oldham, 1986). This process can occur only when students are 

dissatisfied with their current conception and feel the need for a new one. According 

to Posner et al. (1984) they should also consider the new concept as intelligible, 

plausible, and useful in solving problems. 
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However, a stumbling block for such a development and reconstruction can be 

what Lakoff describes as a ‘prototype effect’. He (1987) quotes from studies of Rosch 

that questions the belief that “categories are defined only by properties that all 

members share,” for if that were true, then  

[...] categories should be independent of the peculiarities of any being 
doing the categorizing; that is, should not involve such matters as 
human neurophysiology, human body movement, and specific human 
capacities to perceive, to form mental images, to learn and remember, 
to organize the things learned, and to communicate efficiently.   
 (Rosch,  quoted in Lakoff, 1987, p 7) 

On the contrary, the research conducted by Rosch and others demonstrated that  

[...] categories, in general, have best examples (called “prototypes”) 
and that all of the specifically human capacities just mentioned do play 
a role in categorization. (ibid. p.7) 

Early stages of mathematics in English primary school, are taught through physical 

activities using the senses and it is hoped that children will build on this experience to 

comprehend the nature of mathematical ideas, integrating them with their previous 

knowledge, and building a new category or concept or, where necessary, rebuilding 

the previous one. However, there is always the danger that pupils will accept a 

prototype (an example as representation of the whole category) as the concept. It is 

therefore important how we introduce our students to a new conceptual idea and to be 

aware of which context we are going to use for our explanations and discussion. 

According to Jaworski (1994)  

The pupil might fit the teacher’s words into her own experience to get 
a meaning different from what the teacher tried to convey. Because 
people interpret words and gestures differently, any attempt to convey 
knowledge in an absolute sense must be seen as quite likely to fail. A 
teacher therefore has to find ways of knowing what sense pupils make 
of the mathematical tasks which they are set, in order to evaluate 
activities and plan further lessons.  
 (Jaworski, 1994, p. 220) 

She describes the situation in her article in which  
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[...] the activities in which the learners participated and encouraged 
them to be mathematical, that is to act as mathematicians by 
mathematising particular situations created by their teacher [...] 
learners shared perceptions with each other and with the teacher, and 
their ideas became modified or reinforced as common meanings 
developed. This enabled learners to become clearer and more confident 
about what they knew and understood. (Jaworski, 1994, p. 229) 

In the case of vectors, the pupils’ first introduction in typical English schools occurs 

in Science lessons, mainly through thinking about forces, which is a highly particular 

context with implicit properties that act as possible obstacles to the general notion of 

vector. Many pupils have thinking that is flexible enough to cope with the transition 

to the general notion of vector, despite the specific peculiarities of this particular 

embodiment. However, from the initial investigations into the topic of vectors, which 

will be described in greater detail in chapter 4, it seems that there are many more 

students for whom the concept of force becomes a prototypical concept of a vector 

and these pupils have a problem when the construction of the general concept of 

vector becomes necessary. 

2.3.3 An example: the case of fractions 

The subtleties required in construction of mathematical concepts can be illustrated by 

the case of fractions. Many mathematics text-books introduce the idea of the fractions 

as part of circles (pizzas, pies, cakes). This type of representation is very restrictive, 

and is only good for the imagination of simple fractions like 1/2, 1/4, 2/3, 5/6, etc. 

Kerslake’s research (1986) shows that  

[...] the only model of a fraction that was widely accepted was that of a 
geometric ‘part of a whole’ Not only was it the only universally 
accepted model of 3/4, but children referred to parts of circles or parts 
of cakes when trying to explain other problems during the course of 
the interviews, such as addition of fractions, or whether 2/3 is bigger or 
smaller than 3/4. (Kerslake, 1986, p. 71) 

Because of this representation  
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[...] most children found it difficult to think of fractions as numbers, 
particularly when asked to place them on the number line.  
 (Kerslake, 1986, p. 71) 

After teaching an experimental group with a number line only, she concluded that  

[...] while the geometric ‘part of a whole’ model may well be useful 
one in establishing some of the basic ideas about fractions, serious 
consideration is necessary as to its limitations and to the need for 
presenting the idea of a fraction in a wider context. 
 (Kerslake, 1986, p. 96) 

A particular conclusion drawn from this research was that “the distinction needs to be 

drawn between the embodiment and the idea,” (p 96). 

This experience with fractions shows that a single embodiment of a general 

concept can inhibit the formation of a more general version of the same concept that 

has a wider range of application. The same problem seems to be happening in the case 

of vector. Experiencing a vector in a particular embodiment may lead to the student 

being able to operate in a limited range of cases that are similar to the students’ 

experiences, but which are too narrow to cope with even slightly unfamiliar examples. 

These limitations may be revealed by presenting the student with ‘singular cases’, for 

instance the case where the resultant is required for two arrows whose heads are at the 

same point.  

2.3.4 Embodiment of mathematical concepts in the physical world 

Skemp used the word embodiment before it became fashionable in more recent 

theories of embodied cognition, to describe the way in which a mathematical concept 

is given a physical meaning that represents the underlying mathematical ideas in a 

clear and explicit manner. Skemp (1971, p. 176-177) gives an example of 

embodiment of equivalent fractions arising through the double operation of 

combining and sharing, which, in mathematical terms, are commutative. Sharing 

followed by combining gives the same result as combining followed by sharing, in the 
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following sense. He gives example of a fraction 3/8 which we can first share the 

standard object (a rectangle) into eight parts (figure 2.1) 

 

Fig. 2.2 The first representation of 3/8 

then combine three of these parts (shaded); or alternatively combine three of the 

standard objects and then share the resulting combination into 8 parts (figure 2.2). 

 

Fig. 2.3 The second representation of 3/8 

In both cases we will end up with the three eighths of the standard object. 

This is the closest example I have found in literature to what I call ‘the same 

effect’ of two different actions. It leads Skemp to the idea of representing sets of 

equivalent fractions as shown below (figure 2.3): 

 

Fig. 2.4 representation of equivalent fractions 

This suggests an alternative approach to the learning of fractions. Instead of speaking 

of the mathematical idea of ‘equivalent fractions’, it may be cognitively more 

appropriate to look at equivalent fractions as operations that ‘have the same effect’. 

In the case of vectors, we saw in chapter 1, figure 1.1 that it is possible to add 

vectors in different ways, and these ways have the same result. By embodying a 

vector through the action of translating an object on a flat table, we may focus 

attention on the fact that all the points on the object (or on the hand that moves the 

object) move in the same direction by the same amount. The shift of any such point 
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can be represented as an arrow from its start point to its end point and any of these 

arrows is sufficient to represent the translation. As representations, they have the 

same effect. In this way we can give an embodied underpinning for the notion of free 

vector by focusing on the effect of a translation. 

Lakoff writes: 

“Thought is embodied, that is, the structures used to put together our 
conceptual ideas grow out of bodily experience and make sense in 
terms of it; moreover, the core of our conceptual systems is directly 
grounded in perception, body movement, and experience of a physical 
and social character.” (Lakoff, 1987, p. xiv) 

With respect to symbols, however, Lakoff & Nunez (2000) say, “symbols are, just 

symbols, not ideas,” and that the intellectual content of mathematics lies in its ideas 

for which symbols do the job of characterising their nature and structure. According 

to this viewpoint, abstract ideas make use of formulatable cognitive mechanisms, such 

as conceptual metaphors that import modes of reasoning from sensori-motor 

experiences. 

My research is consistent with this statement as students often seem to ‘know’ 

the graphical symbol of an arrow representing a vector, without having a fully 

coherent understanding of ideas that give rise to its intellectual content. Students I 

have interviewed have had to be helped to attach a mathematical concept to the 

symbol of an arrow before they can manipulate it successfully in a full range of 

contexts, particularly in singular instances. 

Lakoff & Nunez (2000) quote from cognitive science research, that most of our 

thought is unconscious and much of mathematical cognition happens at too low a 

level in the mind to be accessible. We draw conclusions from the world around us 

without being aware of it. We also have unconscious memory, which gives us implicit 

rather than explicit understanding. Schacter (1996) writes that the experiences we 

don’t recall often have a detectable and measurable effect on how we behave. The 

theory of Lakoff & Nunez focuses on these unconscious mechanisms to suggest that 

understanding of mathematics uses the same cognitive mechanisms that are used for 
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ordinary ideas: basic spatial relations, groupings, small quantities, motion, 

distributions of things in space, changes, bodily orientation, basic manipulation of 

objects, iterated actions, and so on (pp. 27, 28). 

On this basis it may be possible to reintroduce a concept, that causes a problem 

in developing understanding, so that, if we use the right experiences in the appropriate 

context, we may be able to set up the unconscious cognition in a more flexible 

manner, which will help the students in developing their knowledge. But how do we 

know when we introduce this idea to students that they build a proper concept and not 

just rote-learn and forget after a short time? The theory of embodiment suggests that 

we need to give appropriate experiences to underpin the concepts with bodily activity 

that integrates and supports the abstract ideas. 

Socio-cultural theorists like Lave and Wenger (1991) view gaining knowledge 

as integration into a community of practice in which social actions are defined. For 

instance, students might be expected to learn the proper techniques of drawing using 

set-square, ruler and compasses. However, how does a community of practice pass on 

its more subtle conceptions that are carried out privately within our minds? Students 

may learn to perform mathematical manipulation of abstract symbols in accordance 

with the observed conventions, but there is still the question of the deeper conceptual 

meanings of the use of symbols to focus on the essential mathematical ideas free (as 

far as possible) from the coercive effects of specific embodiments. 

2.3.5 The transition from embodiment to symbolism 

The necessary shift from embodiment to symbolism has been detailed by Skemp 

(1971): 

First, we learn to manipulate concepts instead of real objects; then, 
having labelled the concepts, we manipulate the labels instead. Finally, 
perhaps, we reverse the process by re-attaching the concepts to the 
symbols and then re-embodying the concept in the real action with real 
objects from which they were first abstracted. (Skemp, 1971, p 83) 
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According to him we cannot use mathematics effortlessly unless we detach the 

symbols from their concepts and we have to be able to manipulate them without 

attention to their meaning. However he emphasises that this manipulation should be 

‘automatic’ and not ‘mechanical’. In automatic manipulation we can easily go back 

and reattach symbols to their meaning, while in mechanical manipulation the symbols 

stay meaningless. Skemp also says that:  

In mathematics, what we store is a combination of conceptual 
structures with associated symbols, and the former would therefore 
seem to be important for the retention of the whole.   
  (Skemp, 1971, p. 85) 

According to Hiebert and Lefevre (1986), symbols are viewed as cognitive aids, they 

“help to organize and operate on conceptual knowledge,” (p. 15). They even go so far 

as to say that “The symbols can also produce conceptual knowledge,”  (p. 15). They 

further write that: “Being competent in mathematics involves knowing concepts, 

knowing symbols and procedures, and knowing how they are related,”(p.16). 

Hiebert and Carpenter (1992) emphasise the importance of the symbolism to 

development of understanding and say that knowledge is represented internally, but 

communicating mathematics requires external representation:  

[...] when the relationships between internal representations of ideas 
are constructed, they produce networks of knowledge.  
  (Hiebert and Carpenter, 1992, pp. 66-67) 

They also say that students often make inappropriate connections or “represent 

information as isolated pieces,” (p. 76) which cause difficulties in making sense of 

mathematical situations. Students build on prior knowledge and this may be 

procedural rather than conceptual, resulting at least in part from years of procedural 

and instrumental instruction. 

Skemp (1979) describes a dynamic process of developing understanding: “to 

understand a concept, group of concepts, or symbols is to connect with an appropriate 

schema” (page 148), which puts the above theories into one sentence. However, this 
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still begs the question of how the students connect all these bits of information into an 

appropriate schema. 

To be able to conceive of ideas in a coherent form and to link them together 

requires a way of making this knowledge appropriate for comprehension and making 

connections. In particular, how do we put together embodied knowledge in a way 

which allows us to shift from embodiment to symbolism in a way that allows the 

symbolism to be used flexibly and meaningfully in a range of contexts? 

2.4 Concept Images and Compression of Knowledge 

Mathematical concepts are highly sophisticated mental constructions. Tall and Vinner 

(1981) define the concept image to be the total cognitive structure associated with a 

mathematical concept in an individual’s mind. The ideas related to the given concept 

are continually constructed as the individual matures and are changing with new 

stimuli and experiences. Given such a range of cognitive structure, it is important to 

understand how the wider aspects of the concept image can be channelled into a 

thinkable entity that can be manipulated mentally in the mind. 

Thurston (1990) described the way in which mathematical ideas start as a 

collection of disparate ideas which, through use and reflection, are compressed into 

easily recalled knowledge: 

Mathematics is amazingly compressible: you may struggle a long time, 
step by step, to work through some process or idea from several 
approaches. But once you really understand it and have the mental 
perspective to see it as a whole, there is often a tremendous mental 
compression. You can file it away, recall it quickly and completely 
when you need it, and use it as just one step in some other mental 
process. The insight that goes with this compression is one of the real 
joys of mathematics. (Thurston, 1990, p. 847) 

On the same note, Crick (1994) states that the brain can make conscious decisions 

only by suppressing data and focusing on a limited quantity at a time. 

Krutetskii (1976) writes: 
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Retaining information in generalized and abbreviated form … does not 
load the brain with surplus information and thus permits it to be 
retained longer and used more easily. (Krutetskii, 1976, p. 300) 

2.4.1 Cognitive Units 

Barnard and Tall (1997) introduced the term cognitive unit for part of the concept 

image that can be held consciously in the focus of attention. A cognitive unit can be a 

symbol or representation or any other aspect related to the particular concept. For 

example in case of vectors it can be an arrow or a triangle of three vectors showing 

one side to be the sum of the vectors represented by the other twos. They hypothesise 

that powerful thinking arises through compressing information into rich cognitive 

units that can be manipulated in the mind. 

A powerful aspect of reflective thinking is the ability to compress a 
collection of cognitive units – which may be processes, sentences, 
objects, properties, sequences of logical deduction etc – into single 
entity that can be both manipulated as a concept and unpacked as a 
cognitive schema. (Barnard and Tall, 1997, p. 2) 

This is particularly relevant to my own research as I seek ways of helping students to 

move from a range of experiences with the notion of vector to a central notion of free 

vector as a cognitive unit in its own right that has coherent meanings across a range of 

contexts. 

2.4.2 Process-object encapsulation 

A major theory that builds on the idea of internalising knowledge into thinkable 

entities is the APOS theory of Dubinsky and his colleagues, which is based on 

Piaget’s epistemology of mathematics (Beth & Piaget, 1966). The acronym APOS 

stands for Action-Process-Object-Schema:  

An action is any physical or mental transformation of objects to obtain 
other objects. It occurs as a reaction to stimuli which the individual 
perceives as external. It may be a single step response, such as a 
physical reflex, or an act of recalling some fact from memory. It may 
also be a multi-step response, by then it has the characteristic that at 
each step, the next step is triggered by what has come before, rather 
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than by the individual’s conscious control of the transformation. … 
When the individual reflects upon an action, he or she may begin to 
establish conscious control over it. We would then say that the action 
is interiorized, and it becomes a process …. [Then] actions, processes 
and objects ... are organized into structures, which we refer to as 
schemas. 
 (Cottrill, et al., 1996, p. 171) 

This theory is, in part, a theory of compression, from step-by-step actions to processes 

conceived as a whole that are then conceived as mental objects. In our approach to 

free vectors, this theory would suggest that individual actions (such as a shift of a 

triangle on a table) may be considered as a process (the transformation as a whole) 

and then conceived as an object (a free vector). 

Sfard (1991, 1992) describes a similar sequence of compression:  

First there must be a process performed on already familiar objects, 
then the idea of turning this process into a more compact, self-
contained whole should emerge, and finally an ability to view this new 
entity as a permanent object in its own right must be acquired. These 
three components of concept development will be called 
interiorization, condensation, and reification, respectively.(Sfard, 1992, 
pp. 64–65) 

Though ideally the compression from action to process to object is highly desirable, 

Dubinsky and his colleagues found that college students often were able to move from 

action to process, but the next stage of producing a mental object was more difficult. 

(eg. Breidenbach, et al, 1992). They also reviewed their theory to explain that ‘the 

construction of these various conceptions of a particular mathematical idea is more 

dialectic than a linear sequence’ (Dubinsky and McDonald, 2001). 

The serious question is therefore how a student can begin to think of a process 

as a mental object. A process occurs in time, an object is an entity that occurs in space 

(either real or imagined). Gray and Tall (1994) suggested that the mechanism by 

which this is done is through the use of a symbol to operate dually as process or 

concept. Thus the symbol 3+2 is both the process of addition and the concept of sum. 

They called a symbol that dually represents either process or concept a procept. 
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This highlighted the need for a symbol to function in a dual role, such as an 

arrow for a vector to represent both the process (as a movement from tail to nose) and 

the object (the arrow itself). However, the fact that an arrow has two distinct 

interpretations does not mean that students have a genuinely flexible view of vector. It 

seems that students can learn to operate with vectors as arrows in a limited way 

without constructing a flexible concept of a free vector. More insight is clearly 

required. 

A clue is found in the description of Sfard: “First there must be a process 

performed on already familiar objects”. The process-object encapsulation proposed 

by both Sfard and Dubinsky starts with actions on objects that already have meaning 

for the student. Tall and Gray (2001) suggest: 

[...] the theorised encapsulation (or reification) of a process as a mental 
object is often linked to a corresponding embodied configuration of the 
objects acted upon (which we henceforth refer to as base objects).  
 (Gray & Tall, 2001, p. 266) 

This idea links closely to Joshua’s notion of effect. The compression of knowledge 

formulated in APOS theory does not begin with the A of ‘Action’ but with the B of 

‘Base object’. This gives a ‘BAPOS’ theory (proposed by Chae, 2002) in which Base 

objects are operated on by Actions, interiorized as Processes, encapsulated as Objects, 

within a wider Schema. By focusing on the effect of the Actions on the Base Objects, 

it now becomes possible to see the idea that represents the Process as a whole and can 

be symbolised as an Object. In the case of a translation, the base object is a figure (say 

a triangle) on a table and the effect is the shift from the initial to the final position of 

the base object without focusing on what happens in between. The effect can be 

represented by any arrow that has the same magnitude and direction as the shift, and 

any of these arrows represents the free vector that is the total shift from initial to final 

position. 

This brings us closer to a possible theory of compression of the notion of 

translation into the concept of free vector. But we still need to seek a way in which 
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this can be encouraged in our students. This takes us back to the fundamental idea of 

reflective thinking. 

2.4.3 Reflection 

Driver (1989) says that teaching involves the organisation of the classroom situation 

in a way which promotes learning outcomes. 

Piaget (1985) suggests that one of the strategies to foster conceptual change is, 

to confront students with discrepant events and invoke a conceptual conflict which 

forces students to reflect on their conceptions as they try to resolve the conflict. 

However this can cause problems. Dreyfus, Jungwirth, and Elivitch (1990) found that 

their more able students react enthusiastically to conceptual conflict, but less 

successful students try to avoid the conflict or simply do not even recognise it.  

As suggested by Barnard and Tall, if a student never builds a cognitive unit out 

of all the information he manages to assimilate then it would be very difficult for him 

to manipulate ideas and use them in solving problems presented to him. 

Palmer & Flanagan (1995) found out that children develop their own ideas 

based on their own experiences. These ideas are often quite different from the 

accepted scientific viewpoints. Gilbert & Watts (1983) call them the “alternative 

conceptions” and Pines & West (1986) recognise that they significantly interfere with 

learning. One such concept is the Aristotelian idea that an action of continuous force 

keeps an object in motion. Sadanand & Kess (1990) found that 82% of senior high 

school students indicated that a force is required to maintain motion. Clement (1982) 

found that 75% of a group of university students indicated that there should be a force 

in the direction of the motion even after one semester of instructions in mechanics. 

Kilpatrick (2002) suggests that students might have problems with 

understanding certain areas because they might not have encountered situations 

meaningful to them in which mathematics was important to know. Kilpatrick (2002) 

quotes the USA National Council of Teachers of Mathematics (1991), which specifies 

that the teacher’s role is to orchestrate the discourse so that the students in this class 
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will function as an intellectual community. The teacher should set up a situation and 

then respond to what the students are saying by building on their observation, seeking 

clarification, and challenging them to explain and justify. This suggests that reflection 

is a process which would address these needs. The literature devoted to theories of 

how learners learn and how teachers teach (for example: Piaget, Skemp, Kilpatrick) 

have highlighted reflection as a central mechanism in thinking. This links closely with 

our earlier discussion of the constructivist approach to promoting learning advocated 

by Jaworski. 

2.5 Bringing theories together 

We are now moving to a position where the range of theories are bringing forward a 

general trend moving from initial intuitions from embodiment (which may include 

‘false intuitions’) to a focus on the effects of actions to lead to symbolism. As we saw 

earlier, this is part of a cognitive development is described by Piaget in his stage 

theory of sensori-motor, pre-conceptual, concrete-operational and formal operational 

and by Bruner in his enactive, iconic and symbolic modes. 

These were brought together by Biggs and Collis (1982) in their SOLO 

taxonomy to categorise the Structure of Observed Learning Outcomes. Biggs and 

Collis proposed five modes of cognitive development: sensori-motor, ikonic, 

concrete-symbolic, formal and post formal. They also note that, as each mode 

becomes available, it remains available alongside the new modes. Thus the 

introduction of the ikonic mode also includes the sensori-motor mode, which gives a 

combined embodied mode that encompasses both enactive and iconic (in the sense of 

Bruner). The concrete-symbolic mode includes the development of arithmetic and 

algebra and of the symbolic aspects of vectors. The formal modes include the notion 

of definition and deduction will not concern us here, but were suggested by Biggs and 

Collis (1982) to take the theory of Piaget beyond secondary education into graduate 

and postgraduate work. 
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These modes were consolidated into three by Gray and Tall (2001) in terms of 

embodiment (enactive and iconic), symbolic, and formal-axiomatic. In considering 

different types of mathematical concept they wrote: 

For several years [...] we have been homing in on three [...] distinct 
types of concept in mathematics. One is embodied object, as in 
geometry and graphs that begin with physical foundation and steadily 
develop more abstract mental picture through the subtle hierarchical 
use of language. Another is the symbolic procept which acts 
seamlessly to switch from a “mental concept to manipulate” to an often 
unconscious “process to carry out” using an appropriate cognitive 
algorithm. The third is an axiomatic object in advanced mathematical 
thinking where verbal/symbolical axioms are used as a basis for a 
logically constructed theory. (Gray & Tall, 2001, p.70) 

The three levels of object-construction described by Gray & Tall occur in the 

development of vectors, for instance, an arrow is an embodied object, the notion of 

the vector as a shift in space or as column vector has the structure of a procept and the 

axiomatic notion of vector space is an axiomatic object. 

The research in this thesis inhabits the first two modes discussed here, the 

embodied mode which leads to graphical representations of vectors and the symbolic 

mode. To trace the development through the two modes, I again turned to the SOLO 

taxonomy where Biggs and Collis suggest that each mode has a common sequence of 

stages which can be used to test the quality of outcomes observed in tests designed for 

assessment. The stages are: pre-structural where no structure is used; unistructural, 

when student focuses only on a single aspect; multi-structural, when student focuses 

on several separate aspects; relational when the student relates different aspects 

together in a coherent way, and extended abstract where the student can see the 

concept from an overall viewpoint. 

Bringing together a range of viewpoints, Pegg and Tall (2003) suggested that 

the SOLO theory encompasses a ‘fundamental cycle’ of conceptual development 

common to a range of distinct theories (figure 2.3).  
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  Davis APOS Gray & Tall Fundamental Cycle 

 Base Object(s) Base Object(s)  

Unistructural 

 
Isolated Actions 
Procedure 

Multistructural 

 

VMS† 

Procedure 

 

Action 

 

Procedure 
 

[Multi-Procedure] Multi-Procedure 

Relational Process Process Process Process 

Unistructural 
(Extended 
Abstract) 

Entity Object 

Schema 

Procept Entity 

Schema 

 
† VMS stands for Visually Moderated Sequence 

Table 2.1 The fundamental cycle of conceptual construction 

In each theory the first stage involves some kind of action on one or more base 

objects in which the focus of attention can be either on the object, or on the actions. 

Attention focused on the actions themselves can be consolidated into procedures (or 

multi-procedures) where there may be different ways (procedures) to carry out the 

same overall process. With support of symbols, students may at this stage construct a 

mental object as a cognitive unit which (according to the article) is both a schema 

within itself and also an entity that is manipulable within a wider schema of activities.  

2.5.1 Combining modes 

The previous section looked at the fundamental cycle of concept development that 

happens in a given mode. In our development we wish to see students construct the 

notion of free vector that relates across different modes. In the SOLO taxonomy, at 

the concrete symbolic stage, the student will also have available the embodied mode 

which may be viewed as a combination of enactive and iconic. As we shall see in the 

later study, some students may prefer to use the symbolic mode, others the embodied 

graphic mode and some will use a flexible combination of both. 
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2.5.2 Versatile thinking 

Krutetskii (1976) identifies three basic types of mathematical cast of mind: the 

analytic type (who tends to think in verbal-logical terms), the geometric type (who 

tends to think in visual-pictorial terms), and the harmonic type (who combines 

characteristics of the other two).” (1976. p.xiv). He studied ‘capable pupils’ and 

discovered that a significant majority of them belonged to the third category. He 

suggests that such pupils are “quite ingenious in their visual interpretation of abstract 

relationships, but their visual images and schemes are subordinated to a verbal-logical 

analysis [...]. They are successful at implementing both an analytic and a pictorial-

geometric approach to solving many problems,” (Krutetskii, 1976, p. 326). 

The distinction between different styles of thinking has long been a focus of 

attention in the literature. Brumby (1982), for example, noted two different strategies 

for solving a problem: 

 (i) Immediately breaking a problem or task into its component parts, 
and studying them step by step, as discrete entities, in isolation from 
each other and their surroundings. 

 (ii) An overall view, or seeing the topic/task as a whole, integrating and 
relating its various subcomponents, and seeing them in the context of 
their surroundings. (Brumby, 1982, p.244) 

Her research suggested three distinct groups of students: those who consistently used 

only serialist/analytic strategies, those who used only global/holistic strategies, and 

those who used a combination of both, whom she described as versatile learners. 

Overall 42% of her sample maintained a serialist/analytic style, 8% were 

global/holistic and 50% were versatile. 

In his thesis, following Brumby, Thomas (1988) used the term versatile to 

describe the complementary combination of global-holistic thinking and serial-

sequential thinking. Subsequently it has been used to describe students who are able 

to use a variety of techniques in different contexts involving both linear procedural 

activities and also more flexible conceptual thinking (Blackett, 1990). 
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In this thesis we will describe students to be versatile if they are able to use their 

knowledge of free vector in a versatile way in solving problems in both the embodied 

and numeric modes. 

2.6 Summary 

In this chapter a range of theories of cognitive development have been considered 

from intuitive beginnings through instrumental and relational understand of 

procedural and conceptual knowledge. Although philosophers may regard intuition as 

a basis of all knowledge, it also depends on our human characteristics which can 

involve false physical intuitions at variance with subsequent theories. 

Reviewing the theories of cognitive development proposed by Piaget and 

Bruner, I used the embodied theory of Lakoff to see the foundation of human 

development in embodiment (with links to Bruner’s enactive and iconic modes) and 

focus on the transition to the symbolic mode, looking to constructivist theories to help 

students construct the shift from embodiment to symbolism, in flexible ways, in a 

variety of contexts. This involves the compression of knowledge from separate pieces 

of information into thinkable mental cognitive units. 

Reviewing theories of Dubinsky, Sfard and Gray & Tall concerning the notion 

of ‘process-object encapsulation’, starting from step-by-step actions, interiorised to 

global processes and encapsulated as objects, we note the perceived difficulty of 

reconceptualising process as object. 

At this point we introduce the notion of ‘effect’ that arose in discussion with the 

student Joshua in the Preliminary Study to use an extended BAPOS theory, in which 

Base Objects have Actions upon them, interiorising to Processes, then Objects, where 

the encapsulated object is now represented in terms of the ‘effect’ of the action on the 

base objects. 

Introducing SOLO taxonomy not only incorporates the theories of Piaget and 

Bruner, but also has a cycle of concept construction that relates to theories of process-

object encapsulation, to give a broader theory that can be used not only to describe the 
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development of embodied and symbolic modes of operation, but also to relate them 

together in a versatile way. 


